• Events
    • Blog
    • CSR
    • About Us
    • Careers
  • Customer Login
  • Contact
Logo
  • Digital Factory
    Products
    • factory CONNECT
    • power CONNECT
    • machine CONNECT
    • digital LOGBOOK
    • inetra
  • Digital Factory
    Services
    • Knowledge Based Engineering
      • Product Configurator
      • Design Automation
    • Vision Based Inspection
      • Part Segregation
      • Defect Detection
      • End-Of-Line Inspection
      • Dimension Inspection
    • Digital Thread
    • IIoT Solutions
    • Industrial Security
      • Vehicle Tracking System
      • People Tracking
      • Indoor Asset Tracking
    • Engineering Services
      • Reverse Engineering
      • CAx Design Services
      • Product Design
      • Tool & Fixture Design
      • Advance Engineering
  • CAx PLM
    Software Development
    • CAx Software Development
    • AI in CAx
    • Knowledge Based Engineering
      • Product Configurator
      • Design Automation
    • CAx Plugin Development
    • PLM Connectors
  • CAx PLM
    Technologies
    • Revlib
    • Mesh Boolean
    • Mesh Tools
    • Exchange

Tag Archives: drawing

  • Home
  • Tag Archives
what-is-geometric-modeling
  • September 4 2019
  • admin

What is Geometric Modeling

Table of Content Representation of Geometric Models Types of Geometric Modelings Requirements for Geometric Modeling The culture of design & manufacturing incorporates various crucial aspects for producing a market- efficient product. Computer-aided Engineering or CAE is a central part of the entire manufacturing process. Over the years, the function of CAE has evolved so much that it has developed its applications depending upon the type of usage and execution. Geometric Modeling happens to be one of the most popular CAE applications. Geometric Modeling is the computer/software-generated mathematical representation of an object’s geometry. It includes both graphical and non-graphical information. This information is stored in a database and displayed as a picture. It is then possible to edit and analyze the model in different ways. As curves are easy to manipulate and bend as per application, geometric modeling uses curves extensively to construct surfaces. The formation of curves can be achieved by – a set of points, analytic functions, or other curves/functions. The mathematical representation of an object can be displayed on a computer and used for the generation of drawings, which go on for analysis and eventual manufacturing of the object. In general, there are three conventional steps to creating a geometric model: Representation of Geometric Models There are two basic types of geometric models: a two-dimensional model, which is used for technical drawing, and a three-dimensional model, which is used for computer-aided design and manufacturing. Constructing a geometric model in CAD involves using a 3D computer program to describe geometric relationships and the physical extent of a component. The models may also contain material properties and other attributes of the element, such as the mass of the component. Many CAD programs can calculate a component’s mass properties and evaluate its other physical properties. These capabilities may be crucial for flexible and adaptive manufacturing lines. There are two main types of representations in geometric modeling. The classical presentation of geometric objects consists of geometric pointsets defined by boundaries. On the other hand, modern geometric modeling uses parametric families of pointsets. Parametric families are defined using geometric operation graphs, features, and constraints. In both cases, a user interacts with an example object from the family. It may also be a surface, a volume, or a solid. In addition to these models, geometric modeling can incorporate other design and manufacturing aspects. Computer- aided engineering, or CAE, is the central component of the manufacturing process. With the help of geometric modeling applications, key elements can be created, transformed, and integrated into the desired shape. In addition to this, CAD applications can also incorporate complex mathematical operations. Types of Geometric Modelings Depending upon the representations of objects, geometric modeling system can be classified into three categories, which are: Solid modelingSolid modeling also known as volume modeling, this is the most widely used method, providing a complete description of solid modeling. Solid modeling tools allow you to build many sides of an object at once. Solid models make multiple sides at once, reducing the ambiguity in surface modeling. Surface modelingSurface modeling is another popular method. This type of modeling represents the object by its surface and is used to describe the object with a clear view of manufacturing. This method uses surface geometry to create objects with complex forms. From this clear point of view, surface modeling cannot be used to develop an internal surface of any model. Surface modeling uses Bezier and B-spines. Surface modeling is better for design engineers as it organizes the edges that define polygonal surfaces. Wireframe modelingIt is a simple modeling system used to represent the object with the help of lines only. Hence, it is also known as Line model representation. However, wireframe modeling is not enough to express complex solids; therefore, it is used to describe only wiring systems. Wireframe geometric modeling is a good option for small-scale companies, where intricate surface details are essential for product design. Requirements for Geometric Modeling The various requirements of geometric modeling are as follows: Geometric modeling is a vast and elaborate field of CAE and requires in-depth study. The following articles dive deep into the various types and facets of geometric modeling.

Read More

Tags

3D model 3D Printing Additive Manufacturing algorithms Artificial intelligence Ble and Beyond CAD CAD Software Development CAE Cloud Computing customization Digital Factory Digital transformation Digitization Engineering services Fixtures geometric modeling geometry GPS Tracking image processing image recognition Industry 4.0 insourcing Jigs Knowledge-Based Engineering machine manufacturing MES - Manufacturing Execution System mesh model modeling non-parametric optimization Outsourcing parametric point cloud Product Configurator product development Remote Machine Monitoring Reverse Engineering Smart Machines solid modeling Ultra-Wide Band Vision-Based Inspection vision based inspection
Shape
Logo

We empower through innovation, collaboration, and transformative solutions

Services

  • factoryCONNECT
  • powerCONNECT
  • machineCONNECT
  • CAD Software Development
  • Knowledge Based Engineering
  • Vision Based Inspection
  • iNetra

Company

  • About Prescient
  • Knowledge Center
  • Case Study
  • Webinar
  • Blog
  • CSR
  • Careers
  • Contact Us

Contact Info

  • B507, 4th Floor, Teerth Technospace, Pune 411045. Maharashtra, India
  • Office no 25. MI, Troy - Troy Liberty Center 100 West Big Weaver Road, Suite 200, Troy, Michigan 48084
  • contact@pre-scient.com
  • +91-2066477900

© 2025 Prescient Technologies | All Rights Reserved

  • Legal
  • Privacy Policy
Get a free guide




    Download Case Study