Our Digital Logbook is accessible anytime, anywhere. Whether you prefer on- premises or cloud deployment, our platform provides the flexibility to suitHighlighting how Digital Thread saves time and resources by eliminating manual data entry and transfer, allowing employees to focus on more value-added tasks your specific needs.
Tailor your checklists to fit your unique requirements. With our platform, you can easily create and configure checklists, define the order of checklist items, and provide additional instructions for each step.
Utilise our Intelligent Sensing Technology Platform for precise part segregation. Employ advanced sensors such as CCTV, Laser Scanners, GPS, BLE, and UWB. Achieve streamlined operations, reduced waste, and enhanced quality control.
Leverage our Intelligent Sensing Technology Platform for reliable defect detection. Utilise advanced sensors and real-time data analysis for accurate results. Prevent costly product recalls, reduce rework, and improve customer satisfaction.
Ensure the highest quality standards with our comprehensive end of line inspection. Integrate our Intelligent Sensing Technology Platform for meticulous examination. Verify critical parameters, identify anomalies, and ensure regulatory compliance.
Optimise 3D printing processes with our in-situ inspection services. Monitor and control the printing process in real-time using advanced sensors. Detect errors early, minimize material waste, and accelerate time-to-market.

Schedule Free Consultation Today
Finds surface defects, assembly errors, and misaligned parts.
Inspects circuit boards, solder joints, and semiconductor wafers.
Detects paint flaws, scratches, and structural issues.
Checks packaging, labels, and tablet quality.
With years of industry expertise, we have a deep understanding of energy management challenges and solutions.
Our EMIS leverages the latest advancements in data analytics, machine learning, and IoT technologies to deliver optimal results.
We tailor our EMIS to fit your organization's unique requirements, ensuring a solution that aligns perfectly with your goals.
Our team is committed to your success. From implementation to ongoing support, we provide personalized assistance every step of the way.
Ladies she basket season age her uneasy saw. Discourse unwilling am no described dejection incommode no listening of. Before nature his parish boy.
Ladies she basket season age her uneasy saw. Discourse unwilling am no described dejection incommode no listening of. Before nature his parish boy.
Ladies she basket season age her uneasy saw. Discourse unwilling am no described dejection incommode no listening of. Before nature his parish boy.
Ladies she basket season age her uneasy saw. Discourse unwilling am no described dejection incommode no listening of. Before nature his parish boy.
Our EMIS leverages the latest advancements in data analytics, machine learning, and IoT technologies to deliver optimal results.
We tailor our EMIS to fit your organization’s unique requirements, ensuring a solution that aligns perfectly with your goals.
We tailor our EMIS to fit your organization’s unique requirements, ensuring a solution that aligns perfectly with your goals.
Our team is committed to your success. From implementation to ongoing support, we provide personalized assistance every step of the way.
vision based inspection refers to the process of conducting thorough assessments and examinations in industrial settings to ensure quality control, detect defects, and maintain compliance with industry standards.
vision based inspection is crucial for identifying and addressing potential issues early in the production cycle, ensuring the delivery of high-quality products, minimizing rework, reducing waste, and enhancing customer satisfaction.
Prescient Technologies provides a range of services, including part segregation, defect detection, end of line inspection, and in-situ inspection for 3D printing processes, all powered by our Intelligent Sensing Technology Platform.
The Intelligent Sensing Technology Platform developed by Prescient Technologies integrates advanced sensors such as CCTV, Laser Scanners, GPS, BLE, and UWB to collect real-time data and enable precise inspection in industrial settings.
Part segregation ensures the proper separation and categorization of components, minimizing errors and improving efficiency in manufacturing, assembly, and quality control processes.
Defect detection allows for the identification and elimination of product imperfections, ensuring that only high-quality items are delivered to customers, reducing the risk of recalls and enhancing brand reputation.
End of line inspection provides a final quality check before products are released to the market, minimizing the risk of delivering faulty items, maintaining compliance with regulations, and safeguarding customer satisfaction.
In-situ inspection for 3D printing enables real-time monitoring and control, ensuring the quality and integrity of printed objects, reducing material waste, and accelerating the time-to-market for innovative products.
Prescient Technologies serves a wide range of industries, including automotive, aerospace, electronics, manufacturing, and more, tailoring inspection solutions to meet the specific needs of each sector.
To get started, simply reach out to our team by contacting us via phone or email. We'll be happy to discuss your specific requirements, provide personalized solutions, and guide you through the process.
Your PLM system should evolve with your business not trap it in place. Yet countless manufacturers discover this truth too late, when a seemingly simple software upgrade becomes a six-month ordeal requiring extensive code rewrites and threatening business continuity. The difference between configurable and customized PLM isn’t just technical semantics. It’s the difference between a system that grows with you and one that eventually holds you hostage. The Upgrade Lock-in Problem: A Growing Crisis Every year, PLM vendors release new versions packed with enhanced capabilities, security patches, and modern integrations. Your competitors adopt these improvements quickly, gaining efficiency advantages. Meanwhile, your team receives the dreaded news: “Our customizations aren’t compatible with the new version. Upgrading will take 8-12 months and cost $500,000.” This scenario plays out across manufacturing with alarming frequency. Companies invest heavily in PLM systems, customize them extensively to meet specific requirements, and then discover they’ve created upgrade barriers that grow more expensive with each passing version. The financial impact compounds over time: Beyond dollars, upgrade lock-in creates operational paralysis. Teams hesitate to modify processes because changes might complicate future upgrades. Innovation stalls. Business agility suffers. The system that should enable growth becomes a constraint. Why Heavy Customization Creates Technical Debt Understanding why PLM customization leads to upgrade lock-in req uires examining how customizations interact with core system architecture. When vendors release new versions, they modify underlying code, databases, and APIs. Extensive customizations built on the old foundation often break catastrophically. Core modifications are the biggest culprit. When customizations alter fundamental PLM objects, workflows, or data models, they create fragile dependencies. A vendor’s structural change can cascade through dozens of custom modules, requiring complete rewrites. Custom code lacks vendor support. During upgrades, vendors test and validate their standard functionality. Your custom code? That’s entirely your responsibility to fix, test, and validate. This burden grows exponentially with customization complexity. Integration points multiply maintenance. Custom integrations with ERP, CAD, and other systems often rely on specific API versions. Vendor upgrades frequently deprecate old APIs, forcing integration rewrites alongside core customization updates. Documentation gaps compound problems. Custom code written years ago by departed developers becomes a black box. Without proper documentation, even simple customization updates consume weeks of reverse-engineering effort during PLM implementation upgrades. The irony? Most heavy customizations address requirements that configurable solutions could have handled with proper PLM implementation planning. Configurable PLM: Built-in Flexibility Without the Baggage Modern configurable PLM platforms deliver extensive flexibility through vendor-supported mechanisms designed to survive upgrades. Understanding these capabilities transforms how manufacturers approach PLM customization decisions. Configuration tools provide powerful adaptation: These configuration capabilities handle 80-90% of typical “customization” requirements. The critical difference? Configurations remain vendor-supported through upgrades. The vendor tests configuration compatibility, provides migration tools, and ensures configurations survive version transitions. The upgrade advantage is transformative: Strategic PLM implementation leverages configuration first, reserving true customization for genuinely unique requirements that configuration cannot address. The Smart Customization Strategy: When and How to Customize Eliminating all PLM customization isn’t realistic or advisable. Some requirements genuinely exceed configuration capabilities. The key is distinguishing necessary customization from premature customization and implementing it with upgrade survivability in mind. Reserve customization for these scenarios: When customization is necessary, follow upgrade-friendly principles: Build through extensibility frameworks. Modern PLM platforms provide custom development frameworks designed for upgrade compatibility. These frameworks offer hooks, events, and APIs that remain stable across versions, allowing customizations to survive upgrades with minimal modification. Maintain strict separation from core code. Never modify vendor-supplied objects, workflows, or data models directly. Build separate custom modules that interact with the core through supported interfaces. This isolation prevents vendor changes from breaking your customizations. Document obsessively with future developers in mind. Every customization needs comprehensive documentation explaining business requirements, technical implementation, dependencies, and testing procedures. Future upgrade teams will thank you. Version control everything. Maintain complete revision history of all custom code, configurations, and documentation. This enables rapid assessment of what changed between versions and expedites upgrade testing. Plan upgrade testing from day one. Design customizations with testability in mind. Maintain automated test suites covering all custom functionality. This dramatically reduces validation time during actual upgrades. Thoughtful PLM customization balances current needs with long-term flexibility, ensuring your investment supports rather than constrains future growth. Implementation Strategy: Getting It Right From the Start The most effective time to prevent upgrade lock-in is during initial PLM implementation. Decisions made during deployment establish patterns that persist for years. Following a configuration-first methodology protects long-term flexibility while meeting immediate requirements. Phase 1: Requirements Analysis with Configuration Mapping Before writing a single line of custom code, exhaustively explore configuration capabilities: Many “must-have customizations” evaporate when configuration capabilities are fully understood and business processes adapt modestly. Phase 2: Configuration-First Implementation Implement all configuration-addressable requirements first: This approach delivers immediate value while maintaining upgrade flexibility. Teams gain experience with configuration tools, often discovering additional standard solutions for perceived customization needs. Phase 3: Selective, Strategic Customization For requirements genuinely exceeding configuration capabilities, implement minimal, focused customizations: Phase 4: Ongoing Governance Establish rigorous change management processes: Strong governance prevents customization creep that gradually recreates upgrade lock-in despite initial discipline. Moving Forward: Breaking Free from Lock-in If you’re already locked into a heavily customized PLM system, the path forward requires honest assessment and strategic action. Continuing with the status quo only deepens the problem as technical debt compounds with each postponed upgrade. Assessment starts with inventory: Remediation follows multiple paths: Some organizations undertake phased “de-customization” projects, systematically replacing custom code with vendor-supported configurations. Others time major customization reduction with necessary upgrades, combining upgrade and modernization efforts. Still others implement parallel configurable systems, gradually migrating from legacy customized environments. The right approach depends on your specific situation, but action beats inaction. Every year maintaining heavily customized systems increases future migration costs while competitors advance with modern, flexible platforms. Take Control of Your PLM Future PLM customization and PLM implementation decisions made today determine your flexibility tomorrow. The difference between configurable and customized approaches isn’t just technical it’s strategic. Configurable systems adapt
Read MoreYour PLM system should evolve with your business not trap it in place. Yet countless manufacturers discover this truth too late, when a seemingly simple software upgrade becomes a six-month ordeal requiring extensive code rewrites and threatening business continuity. The difference between configurable and customized PLM isn’t just technical semantics. It’s the difference between a system that grows with you and one that eventually holds you hostage. The Upgrade Lock-in Problem: A Growing Crisis Every year, PLM vendors release new versions packed with enhanced capabilities, security patches, and modern integrations. Your competitors adopt these improvements quickly, gaining efficiency advantages. Meanwhile, your team receives the dreaded news: “Our customizations aren’t compatible with the new version. Upgrading will take 8-12 months and cost $500,000.” This scenario plays out across manufacturing with alarming frequency. Companies invest heavily in PLM systems, customize them extensively to meet specific requirements, and then discover they’ve created upgrade barriers that grow more expensive with each passing version. The financial impact compounds over time: Beyond dollars, upgrade lock-in creates operational paralysis. Teams hesitate to modify processes because changes might complicate future upgrades. Innovation stalls. Business agility suffers. The system that should enable growth becomes a constraint. Why Heavy Customization Creates Technical Debt Understanding why PLM customization leads to upgrade lock-in req uires examining how customizations interact with core system architecture. When vendors release new versions, they modify underlying code, databases, and APIs. Extensive customizations built on the old foundation often break catastrophically. Core modifications are the biggest culprit. When customizations alter fundamental PLM objects, workflows, or data models, they create fragile dependencies. A vendor’s structural change can cascade through dozens of custom modules, requiring complete rewrites. Custom code lacks vendor support. During upgrades, vendors test and validate their standard functionality. Your custom code? That’s entirely your responsibility to fix, test, and validate. This burden grows exponentially with customization complexity. Integration points multiply maintenance. Custom integrations with ERP, CAD, and other systems often rely on specific API versions. Vendor upgrades frequently deprecate old APIs, forcing integration rewrites alongside core customization updates. Documentation gaps compound problems. Custom code written years ago by departed developers becomes a black box. Without proper documentation, even simple customization updates consume weeks of reverse-engineering effort during PLM implementation upgrades. The irony? Most heavy customizations address requirements that configurable solutions could have handled with proper PLM implementation planning. Configurable PLM: Built-in Flexibility Without the Baggage Modern configurable PLM platforms deliver extensive flexibility through vendor-supported mechanisms designed to survive upgrades. Understanding these capabilities transforms how manufacturers approach PLM customization decisions. Configuration tools provide powerful adaptation: These configuration capabilities handle 80-90% of typical “customization” requirements. The critical difference? Configurations remain vendor-supported through upgrades. The vendor tests configuration compatibility, provides migration tools, and ensures configurations survive version transitions. The upgrade advantage is transformative: Strategic PLM implementation leverages configuration first, reserving true customization for genuinely unique requirements that configuration cannot address. The Smart Customization Strategy: When and How to Customize Eliminating all PLM customization isn’t realistic or advisable. Some requirements genuinely exceed configuration capabilities. The key is distinguishing necessary customization from premature customization and implementing it with upgrade survivability in mind. Reserve customization for these scenarios: When customization is necessary, follow upgrade-friendly principles: Build through extensibility frameworks. Modern PLM platforms provide custom development frameworks designed for upgrade compatibility. These frameworks offer hooks, events, and APIs that remain stable across versions, allowing customizations to survive upgrades with minimal modification. Maintain strict separation from core code. Never modify vendor-supplied objects, workflows, or data models directly. Build separate custom modules that interact with the core through supported interfaces. This isolation prevents vendor changes from breaking your customizations. Document obsessively with future developers in mind. Every customization needs comprehensive documentation explaining business requirements, technical implementation, dependencies, and testing procedures. Future upgrade teams will thank you. Version control everything. Maintain complete revision history of all custom code, configurations, and documentation. This enables rapid assessment of what changed between versions and expedites upgrade testing. Plan upgrade testing from day one. Design customizations with testability in mind. Maintain automated test suites covering all custom functionality. This dramatically reduces validation time during actual upgrades. Thoughtful PLM customization balances current needs with long-term flexibility, ensuring your investment supports rather than constrains future growth. Implementation Strategy: Getting It Right From the Start The most effective time to prevent upgrade lock-in is during initial PLM implementation. Decisions made during deployment establish patterns that persist for years. Following a configuration-first methodology protects long-term flexibility while meeting immediate requirements. Phase 1: Requirements Analysis with Configuration Mapping Before writing a single line of custom code, exhaustively explore configuration capabilities: Many “must-have customizations” evaporate when configuration capabilities are fully understood and business processes adapt modestly. Phase 2: Configuration-First Implementation Implement all configuration-addressable requirements first: This approach delivers immediate value while maintaining upgrade flexibility. Teams gain experience with configuration tools, often discovering additional standard solutions for perceived customization needs. Phase 3: Selective, Strategic Customization For requirements genuinely exceeding configuration capabilities, implement minimal, focused customizations: Phase 4: Ongoing Governance Establish rigorous change management processes: Strong governance prevents customization creep that gradually recreates upgrade lock-in despite initial discipline. Moving Forward: Breaking Free from Lock-in If you’re already locked into a heavily customized PLM system, the path forward requires honest assessment and strategic action. Continuing with the status quo only deepens the problem as technical debt compounds with each postponed upgrade. Assessment starts with inventory: Remediation follows multiple paths: Some organizations undertake phased “de-customization” projects, systematically replacing custom code with vendor-supported configurations. Others time major customization reduction with necessary upgrades, combining upgrade and modernization efforts. Still others implement parallel configurable systems, gradually migrating from legacy customized environments. The right approach depends on your specific situation, but action beats inaction. Every year maintaining heavily customized systems increases future migration costs while competitors advance with modern, flexible platforms. Take Control of Your PLM Future PLM customization and PLM implementation decisions made today determine your flexibility tomorrow. The difference between configurable and customized approaches isn’t just technical it’s strategic. Configurable systems adapt
Read MoreYour PLM system should evolve with your business not trap it in place. Yet countless manufacturers discover this truth too late, when a seemingly simple software upgrade becomes a six-month ordeal requiring extensive code rewrites and threatening business continuity. The difference between configurable and customized PLM isn’t just technical semantics. It’s the difference between a system that grows with you and one that eventually holds you hostage. The Upgrade Lock-in Problem: A Growing Crisis Every year, PLM vendors release new versions packed with enhanced capabilities, security patches, and modern integrations. Your competitors adopt these improvements quickly, gaining efficiency advantages. Meanwhile, your team receives the dreaded news: “Our customizations aren’t compatible with the new version. Upgrading will take 8-12 months and cost $500,000.” This scenario plays out across manufacturing with alarming frequency. Companies invest heavily in PLM systems, customize them extensively to meet specific requirements, and then discover they’ve created upgrade barriers that grow more expensive with each passing version. The financial impact compounds over time: Beyond dollars, upgrade lock-in creates operational paralysis. Teams hesitate to modify processes because changes might complicate future upgrades. Innovation stalls. Business agility suffers. The system that should enable growth becomes a constraint. Why Heavy Customization Creates Technical Debt Understanding why PLM customization leads to upgrade lock-in req uires examining how customizations interact with core system architecture. When vendors release new versions, they modify underlying code, databases, and APIs. Extensive customizations built on the old foundation often break catastrophically. Core modifications are the biggest culprit. When customizations alter fundamental PLM objects, workflows, or data models, they create fragile dependencies. A vendor’s structural change can cascade through dozens of custom modules, requiring complete rewrites. Custom code lacks vendor support. During upgrades, vendors test and validate their standard functionality. Your custom code? That’s entirely your responsibility to fix, test, and validate. This burden grows exponentially with customization complexity. Integration points multiply maintenance. Custom integrations with ERP, CAD, and other systems often rely on specific API versions. Vendor upgrades frequently deprecate old APIs, forcing integration rewrites alongside core customization updates. Documentation gaps compound problems. Custom code written years ago by departed developers becomes a black box. Without proper documentation, even simple customization updates consume weeks of reverse-engineering effort during PLM implementation upgrades. The irony? Most heavy customizations address requirements that configurable solutions could have handled with proper PLM implementation planning. Configurable PLM: Built-in Flexibility Without the Baggage Modern configurable PLM platforms deliver extensive flexibility through vendor-supported mechanisms designed to survive upgrades. Understanding these capabilities transforms how manufacturers approach PLM customization decisions. Configuration tools provide powerful adaptation: These configuration capabilities handle 80-90% of typical “customization” requirements. The critical difference? Configurations remain vendor-supported through upgrades. The vendor tests configuration compatibility, provides migration tools, and ensures configurations survive version transitions. The upgrade advantage is transformative: Strategic PLM implementation leverages configuration first, reserving true customization for genuinely unique requirements that configuration cannot address. The Smart Customization Strategy: When and How to Customize Eliminating all PLM customization isn’t realistic or advisable. Some requirements genuinely exceed configuration capabilities. The key is distinguishing necessary customization from premature customization and implementing it with upgrade survivability in mind. Reserve customization for these scenarios: When customization is necessary, follow upgrade-friendly principles: Build through extensibility frameworks. Modern PLM platforms provide custom development frameworks designed for upgrade compatibility. These frameworks offer hooks, events, and APIs that remain stable across versions, allowing customizations to survive upgrades with minimal modification. Maintain strict separation from core code. Never modify vendor-supplied objects, workflows, or data models directly. Build separate custom modules that interact with the core through supported interfaces. This isolation prevents vendor changes from breaking your customizations. Document obsessively with future developers in mind. Every customization needs comprehensive documentation explaining business requirements, technical implementation, dependencies, and testing procedures. Future upgrade teams will thank you. Version control everything. Maintain complete revision history of all custom code, configurations, and documentation. This enables rapid assessment of what changed between versions and expedites upgrade testing. Plan upgrade testing from day one. Design customizations with testability in mind. Maintain automated test suites covering all custom functionality. This dramatically reduces validation time during actual upgrades. Thoughtful PLM customization balances current needs with long-term flexibility, ensuring your investment supports rather than constrains future growth. Implementation Strategy: Getting It Right From the Start The most effective time to prevent upgrade lock-in is during initial PLM implementation. Decisions made during deployment establish patterns that persist for years. Following a configuration-first methodology protects long-term flexibility while meeting immediate requirements. Phase 1: Requirements Analysis with Configuration Mapping Before writing a single line of custom code, exhaustively explore configuration capabilities: Many “must-have customizations” evaporate when configuration capabilities are fully understood and business processes adapt modestly. Phase 2: Configuration-First Implementation Implement all configuration-addressable requirements first: This approach delivers immediate value while maintaining upgrade flexibility. Teams gain experience with configuration tools, often discovering additional standard solutions for perceived customization needs. Phase 3: Selective, Strategic Customization For requirements genuinely exceeding configuration capabilities, implement minimal, focused customizations: Phase 4: Ongoing Governance Establish rigorous change management processes: Strong governance prevents customization creep that gradually recreates upgrade lock-in despite initial discipline. Moving Forward: Breaking Free from Lock-in If you’re already locked into a heavily customized PLM system, the path forward requires honest assessment and strategic action. Continuing with the status quo only deepens the problem as technical debt compounds with each postponed upgrade. Assessment starts with inventory: Remediation follows multiple paths: Some organizations undertake phased “de-customization” projects, systematically replacing custom code with vendor-supported configurations. Others time major customization reduction with necessary upgrades, combining upgrade and modernization efforts. Still others implement parallel configurable systems, gradually migrating from legacy customized environments. The right approach depends on your specific situation, but action beats inaction. Every year maintaining heavily customized systems increases future migration costs while competitors advance with modern, flexible platforms. Take Control of Your PLM Future PLM customization and PLM implementation decisions made today determine your flexibility tomorrow. The difference between configurable and customized approaches isn’t just technical it’s strategic. Configurable systems adapt
Read More