• Events
    • Blog
    • CSR
    • About Us
    • Careers
  • Customer Login
  • Contact
Logo
  • Digital Factory
    Products
    • factory CONNECT
    • power CONNECT
    • machine CONNECT
    • digital LOGBOOK
    • inetra
  • Digital Factory
    Services
    • Knowledge Based Engineering
      • Product Configurator
      • Design Automation
    • Vision Based Inspection
      • Part Segregation
      • Defect Detection
      • End-Of-Line Inspection
      • Dimension Inspection
    • Digital Thread
    • IIoT Solutions
    • Industrial Security
      • Vehicle Tracking System
      • People Tracking
      • Indoor Asset Tracking
    • Engineering Services
      • Reverse Engineering
      • CAx Design Services
      • Product Design
      • Tool & Fixture Design
      • Advance Engineering
  • CAx PLM
    Software Development
    • CAx Software Development
    • AI in CAx
    • Knowledge Based Engineering
      • Product Configurator
      • Design Automation
    • CAx Plugin Development
    • PLM Connectors
  • CAx PLM
    Technologies
    • Revlib
    • Mesh Boolean
    • Mesh Tools
    • Exchange

Category Archives: Blog

  • Home
  • Category
KBE Methodology for Product Design and Development
  • June 9 2023
  • admin

KBE Methodology for Product Design and Development

Table of content Introduction The KBE Methodology: An Overview The Benefits of KBE in Product Design and Development Application of KBE in Product Design and Development Challenges and Considerations Overcoming Resistance to Automation The Future of Manufacturing and Vision-Based Inspection Conclusion Introduction Businesses continuously seek ways to enhance their product design and development processes in today’s fast-paced, cutthroat business environment. Knowledge-Based Engineering (KBE) is one methodology that has drawn much interest. KBE streamlines the product development lifecycle and boosts overall effectiveness by combining technical expertise, CAD, and AI approaches. This article investigates the KBE approach, its advantages, and how it might be used to build new products. The KBE Methodology: An Overview Knowledge-Based Engineering (KBE) incorporates knowledge from diverse fields into computer- based systems. Engineers can produce novel items quickly because of the automation of design and engineering procedures made possible by these systems. KBE uses the capabilities of expert systems, rule-based reasoning, and artificial intelligence to capture and apply engineering knowledge over a product’s lifecycle. The Benefits of KBE in Product Design and Development The Knowledge-Based Engineering (KBE) methodology can be adapted to create products with various benefits. KBE enables organisations to accomplish their objectives more quickly and successfully. Let’s explore KBE’s advantages, revolutionising how things are created, developed, and released onto the market. Improved Efficiency and Speed KBE makes it possible to automate time-consuming, repetitive design procedures. Engineers can build designs, run simulations, and assess options fast by utilising pre-existing knowledge and regulations. This quickens the product development process, cutting down on time to market and giving the company a competitive edge. Enhanced Product Quality KBE systems enforce design limitations and regulations, reducing mistake rates and guaranteeing adherence to industry standards. KBE lessens the possibility of design mistakes by integrating technical expertise into the design process, improving the overall quality and dependability of the finished product. Increased Collaboration and Reusability KBE encourages communication and cooperation between engineering teams. All stakeholders will easily access design knowledge once it has been collected and organised in a central repository. This promotes reusability and enables engineers to draw on their prior expertise and successful ideas. Cost Reduction KBE’s automated features reduce manual iterations, reducing labour expenses and associated overhead. KBE aids in avoiding expensive design revisions at later phases of product development by minimising mistakes and optimising design decisions. Further lowering costs is made possible by the reuse of information and design elements. Application of KBE in Product Design and Development There are many opportunities when Knowledge-Based Engineering (KBE) is used in the design and development of products. KBE enables engineers to optimise designs, guarantee compliance with standards, and streamline the overall development workflow by interacting with CAD, simulation, and analytic tools. This section will examine how KBE is revolutionising product design and development by transforming how things are developed, validated, and ready for manufacturing. Conceptual Design KBE provides design templates, rule-based reasoning, and simulation tools to aid in the conceptualisation stage. Under established guidelines and limitations, engineers may quickly investigate potential design solutions, assess their performance, and come to wise conclusions. Detailed Design KBE streamlines the creation of 3D CAD models, automates geometric and parametric modelling, and maintains adherence to design standards during the detailed design process. By taking into account various aspects, including material selection, manufacturability, and assembly requirements, it enables engineers to optimise designs. Simulation and Analysis Vision-based inspection systems can validate proper component alignment and positioning in intricate manufacturing lines. To ensure exact assembly and lower the possibility of defective or out- of-place items, they can compare acquired photos against predetermined templates. Early detection of faults allows producers to avoid problems later on and enhance overall product quality. Design Validation and Verification Engineers can validate designs using KBE systems against industry standards, regulatory requirements, and design specifications. KBE makes sure that products fulfil safety, quality, and performance standards before they move into production by automating compliance inspections. Challenges and Considerations Although vision-based inspection systems have several benefits for production, they are difficult to implement. To achieve successful integration and ideal results, these elements must be addressed. Let’s examine the difficulties and vital elements to consider while implementing vision-based manufacturing inspection. Overcoming Resistance to Automation Although there is no denying the advantages of vision-based inspection systems, some manufacturers could be reluctant to adopt automation due to worries about job loss and up-front expenditures. It is crucial to understand that automation does not always imply the replacement of human labour. Instead, it enables them to concentrate on higher-value duties like inspecting inspection data, streamlining processes, and enhancing quality. Furthermore, long-term cost savings and increased productivity can benefit more than the initial investment in vision-based inspection equipment. When weighing the deployment of these technologies, manufacturers should consider the return on investment (ROI) and potential competitive advantages. The Future of Manufacturing and Vision-Based Inspection Automation is the key to the success of manufacturing in the future, and vision-based inspection is leading this change. These systems will grow more potent, precise, and adaptable as technology develops. The effectiveness and capacities of vision-based inspection in manufacturing will be further improved by integration with other developing technologies, including robotics, the Internet of Things (IoT), and augmented reality. Vision-based inspection technologies will maintain product quality and reduce environmental impact as the industry prioritises sustainability and waste reduction. Manufacturers may reduce waste and help create a more sustainable manufacturing ecosystem by identifying problems early in production. Conclusion The manufacturing sector is changing because vision-based inspection systems offer precise, effective, and reasonably priced quality control solutions. By embracing automation, manufacturers can obtain greater precision, increased efficiency, and lower costs. By utilising AI and machine vision technologies, businesses can streamline processes, enhance product quality, and gain a competitive edge in the global market. Ready to revolutionise your manufacturing processes with the vision-based inspection? Contact Prescient today to unlock the power of automation, accuracy, and efficiency in quality control.

Read More
Revolutionising Engineering Design: The Role of AI & Machine Learning in KBE
  • June 9 2023
  • admin

Revolutionising Engineering Design: The Role of AI & Machine Learning in KBE

Table of content Introduction Understanding Knowledge-Based Engineering (KBE) AI and Machine Learning in KBE Benefits of AI in KBE Challenges and Considerations Conclusion Introduction One industry where artificial intelligence (AI) has made significant strides is engineering design. With the advancement of machine learning algorithms, AI is redefining how engineers approach design difficulties, leading to more practical and innovative solutions. In this article, we embark on an exciting voyage into knowledge-based engineering (KBE), where artificial intelligence (AI) and machine learning take centre stage. Get ready to see how the field of engineering design is being revolutionised. Prepare yourself as we examine how AI and machine learning algorithms are rewriting the rules, seamlessly automating tedious jobs, and accelerating creativity to unprecedented levels. So, lets us dive in to know more. Understanding Knowledge-Based Engineering (KBE) By using a knowledge-driven system to automate engineering design processes, knowledge-based engineering (KBE) is a methodology. Developing design alternatives, automating design processes, and supporting decision-making depends on capturing and applying expert knowledge. To enhance the design process and boost productivity, KBE systems combine design guidelines, technical expertise, and computer algorithms to enhance the design process and boost productivity. So, let us explore the cutting-edge world where engineering and technology meet to create new possibilities for design. AI and Machine Learning in KBE KBE systems depend heavily on artificial intelligence, especially machine learning, which enables them to learn from data, spot patterns, and make wise decisions. Here are a few ways that AI and machine learning, through KBE, are revolutionising engineering design: Large amounts of data can be analysed using machine learning algorithms to improve designs. AI can produce design choices and choose the best one based on predefined criteria by finding patterns and relationships in data. This saves time and resources by eliminating the need for manual trial and error. A generative design method uses AI algorithms with limitations and goals to generate many design possibilities. Machine learning models can examine existing designs, draw lessons from them, and produce fresh design concepts better suited to specific needs. This creates new opportunities and enables engineers to investigate novel concepts that may not have been considered. KBE can capture and use expert knowledge to automate design processes with AI-powered expert systems. These systems can replicate expert human decision-making and offer advice based on pre-established norms and criteria. Engineers can create more effectively and efficiently thanks to AI, which uses the pooled expertise of specialists. Machine learning algorithms can analyse large datasets to uncover helpful information that might not be visible to human designers. AI can uncover novel design concepts or optimisation techniques that can result in advancements in engineering design by spotting hidden patterns and connections. This improves originality and creativity during the design process. Benefits of AI in KBE Utilise Knowledge-Based Engineering (KBE)’s (amazing) AI capabilities to accelerate your engineering design process. Bid adieu to manual labour and welcome greater productivity, exactitude, cost savings, and a spurt of invention. Let’s explore the fascinating advantages that AI offers KBE: KBE provides design templates, rule-based reasoning, and simulation tools to aid in the conceptualisation stage. Under established guidelines and limitations, engineers may quickly investigate potential design solutions, assess their performance, and come to wise conclusions. AI aids in cost reduction during the design and production phases by optimising designs and decreasing the requirement for physical prototypes. Simulators and virtual testing with AI capabilities can detect possible problems early on, saving time and money. Engineers can explore various design options and push the limits of what is conventionally thought possible thanks to AI-powered generative design. This encourages creativity and creates new engineering design opportunities. Challenges and Considerations Although using AI in Knowledge-Based Engineering (KBE) has many advantages, there are also significant difficulties and factors to take into account. In order to achieve successful integration and ideal results, these elements must be addressed. The following are some major issues to think about: The decision-making process of AI models can sometimes be opaque, making it challenging to understand the underlying reasons behind their recommendations. This can be a concern, especially in safety-critical engineering applications. As AI becomes more prevalent in engineering design, ethical considerations such as fairness, accountability, and transparency must be addressed. Designers should be aware of potential biases and unintended consequences of AI-powered systems. AI should be seen as a tool to enhance human capabilities rather than replace human expertise. Collaborative approaches that combine human creativity and judgment with AI- driven automation can yield the best results. Conclusion Knowledge-Based Engineering (KBE) technologies based on artificial intelligence are revolutionising engineering design. Engineers may efficiently use expert knowledge, produce creative solutions, and validate and optimise designs using AI. Incorporating AI in KBE provides enhanced efficiency, accuracy, cost savings, innovation, and continual learning. But dealing with issues like data quality, interpretability, ethical concerns, and successful human-machine collaboration is crucial. AI will become increasingly important in determining how engineering design will be done as it develops, allowing engineers to work more effectively, creatively, and successfully. Are you ready to revolutionise your engineering design process? Harness the power of AI and experience the benefits of Knowledge-Based Engineering (KBE) with Prescient. Contact us today to explore how AI-powered solutions can optimise your designs, improve efficiency, and unlock new levels of innovation. Let’s shape the future together!

Read More
KBE and Simulation: Enhancing Product Design
  • June 9 2023
  • admin

KBE and Simulation: Enhancing Product Design

Table of Content Introduction Enhancing Product Design with KBE and Simulation The Power of Knowledge-Based Engineering The Role of Simulation in Product Design Synergistic Effect: KBE and Simulation Case Study: KBE and Simulation in Automotive Design Conclusion Introduction Any business’ success depends greatly on the quality of its products. Enterprises increasingly rely on cutting-edge technology like Knowledge-Based Engineering (KBE) and simulation to develop innovative and effective products. KBE provides the virtual testing and validation of product designs, whereas simulation facilitates the integration of knowledge and rules into design processes. This article examines how enhancing efficiency, lowering costs, and raising overall product quality are revolutionising product design with KBE and simulation. Enhancing Product Design with KBE and Simulation Companies work hard to develop creative and effective products to remain competitive in today’s quickly changing business environment. Learn how simulation and other cutting-edge technologies are changing how products are designed. Examine how KBE and simulation may transform processes to increase productivity, lower costs, and produce goods of higher overall quality. Let’s explore the amazing ways that these technologies are revolutionising the process of product design. The Power of Knowledge-Based Engineering A design methodology known as knowledge-based engineering (KBE) uses rules and technical information that have been gathered to automate and improve the product design process. It enables quicker and more effective design iterations by allowing engineers to integrate their knowledge into software platforms. Here are a few KBE advantages: Automation and Efficiency KBE facilitates the reuse of preexisting design knowledge and automates repetitive design procedures. Due to the substantial reduction in design time, engineers may now concentrate on difficult problems rather than tedious ones. Design Rule Checking Engineers may ensure that designs adhere to industry standards, laws, and best practices by integrating design rules into KBE systems. This reduces the possibility of expensive design mistakes while also eliminating human error. Design Optimization KBE systems can investigate several design options and automatically evaluate them following specified standards. This aids engineers in finding the best design option that satisfies the required performance standards. Knowledge Capture and Retention The entire design team can access the implicit expertise of seasoned engineers thanks to KBE. This guarantees knowledge continuity and allows less experienced designers to use their colleagues’ experience. The Role of Simulation in Product Design The technique of simulating a product or system to study how it would behave under various circumstances. Without physical prototypes, it helps engineers forecast and comprehend how a product will function in the real world. As an example of how simulation improves product design: Iterative Design Using simulation, engineers may swiftly evaluate and improve their design concepts in a virtual environment. Before committing to physical prototyping, they can simulate various scenarios, make design improvements, and assess the effects of those changes. The iterative design method cutscosts and saves time. Performance Evaluation Simulation offers useful information about a product’s performance, including its structural soundness, fluid dynamics, thermal behaviour, and electromagnetic properties. Engineers can spot flaws and make adjustments early in the design process, leading to more durable and dependable products. Risk Mitigation Engineers may pinpoint possible dangers and failure modes in a safe setting through simulation. To ensure the product can resist difficulties encountered in the actual world, it might mimic harsh conditions, stress tests, and failure scenarios. Cost Reduction Using simulation, companies can dramatically lower the expenses of physical prototyping and testing. Simulations are more time and money efficient since there is no need to create numerous prototypes or conduct rigorous testing. Synergistic Effect: KBE and Simulation Combining KBE and simulation creates a powerful synergy that enhances the product design process. Here’s how these technologies work together: Automated Design Space Exploration A variety of design possibilities can be produced by KBE systems and further assessed through simulation. The KBE system creates design possibilities for simulation analysis once engineers define the parameters and limitations. This makes it possible to quickly explore the design space and find the best solutions. Rapid Design Iterations Using simulation, companies can dramatically lower the expenses of physical prototyping and testing. Simulations are more time and money efficient since there is no need to create numerous prototypes or conduct rigorous testing. Virtual Testing and Validation Before a thing is manufactured, engineers can theoretically test and validate it using simulation. Engineers can spot possible problems or opportunities for improvement by running the virtual model through various tests and simulations, such as structural analysis, fluid dynamics, or electromagnetic simulations. This lessens the requirement for physical prototypes and lowers the possibility of expensive design mistakes. Design Optimisation and Performance Evaluation Design optimisation and performance assessment are made possible using KBE and simulation. KBE systems can automatically generate design alternatives based on predefined criteria, and their performance can then be evaluated through simulation. Engineers can choose the most effective and dependable design solution by analysing the simulation data. This collaborative process improves the overall quality of the product design and enables data-driven decision making. Case Study: KBE and Simulation in Automotive Design Let’s look at how KBE and simulation are used in the automotive sector to demonstrate their value in product design. KBE systems can automate the creation of design alternatives for various vehicle components, such as engine parts, chassis, or aerodynamic elements, in the field of automotive design. These designs can then be simulated to assess elements like structural integrity, crashworthiness, and aerodynamic performance. Engineers can pinpoint the best design approaches that abide by safety standards, maximise fuel economy, and improve overall vehicle performance. Time and resources are saved by comparing this integrated strategy to conventional trial-and-error procedures. Conclusion By increasing effectiveness, lowering costs, and raising overall product quality, simulation and knowledge-based engineering (KBE) are revolutionizing product design. KBE facilitates design rule validation and optimization while automating design processes and capturing engineering knowledge. Contrarily, simulation enables engineers to virtually test and evaluate product designs, spot flaws, and reduce risks. Combining KBE and simulation makes rapid design iterations, virtual testing, and design optimisation possible. This integrated strategy speeds up the design process, lowers costs, and produces cutting- edge and dependable products. The use of KBE and simulation in product design is anticipated

Read More
KBE and the Future of Engineering: Predictions and Trends for the Coming Years
  • June 9 2023
  • admin

KBE and the Future of Engineering: Predictions and Trends for the Coming Years

Table of Content Introduction The Future of Engineering and KBE Future Trends and Predictions Navigating the Challenges: Potential Threats in the Realm of KBE Conclusion Introduction Consider a world where engineering is at the top of its game, designs are brilliantly optimised, and the potential for creation is limitless. It is the world of Knowledge-Based Engineering (KBE), where cutting-edge technologies like automation and artificial intelligence (AI) are integrated to transform the design process. KBE is like having a knowledgeable engineering assistant who can analyse choices, crunch numbers, and develop solutions that are optimised beyond your wildest expectations. It’s a game-changer that promotes innovation, saves time, and eliminates ambiguity. This article examines the intriguing possibilities and anticipated changes that the engineering industry will see in the future years. The Future of Engineering and KBE Utilising KBE, you can work fluidly with cross-disciplinary teams, explore novel design approaches, and take advantage of AI-driven optimisation. Pushing boundaries and achieving engineering excellence is more important than just efficiency and cost reductions. So fasten your seatbelts and prepare for an exciting adventure as KBE takes engineering into unknown territory and brings the extraordinary to life. It is crucial to investigate the Predictions and Trends that will influence KBE and engineering as a whole as we enter a new era of technological developments. Future Trends and Predictions Engineering is about to undergo a revolution, and design and innovation will be redefined by knowledge-based engineering (KBE). Let’s explore the fascinating trends and forecasts that will influence the KBE environment in the upcoming years as we look to the future. AI-Driven Design Optimisation The broad implementation of AI-driven design optimisation is one of the key themes for the future of KBE. Engineers can use AI algorithms as they get more sophisticated and potent to optimise designs based on predefined goals and limits automatically. Artificial intelligence (AI) can swiftly and effectively identify the best solutions by analysing enormous volumes of data and simulating countless design iterations. The result is extremely effective and cost-effective designs, which save time and pave the way for increased production and creativity. Generative Design for Unconventional Solutions Another interesting development in KBE is generative design, which enables engineers to investigate novel design approaches that weren’t previously thought of. AI algorithms can be programmed with design limitations and requirements to produce several design options that meet those requirements. Engineers can now explore previously unimaginable possibilities and push the bounds of what is considered practical. In KBE’s future, generative design will significantly foster innovation and empower engineers to produce truly ground-breaking innovations. Integration of IoT and Sensor Data The Internet of Things (IoT) and sensor technologies will be crucial in the future of KBE. Engineers will have access to real-time data from numerous sources with the rise in linked devices and sensors. This information can be used to track how designs work in actual use, spot possible problems, and make data-driven decisions for improvement. The accuracy and dependability of engineering designs will be improved by integrating IoT and sensor data into KBE systems, resulting in more effective and durable solutions. Augmented Reality (AR) and Virtual Reality (VR) in DesignVisualisation The way engineers visualise and interact with designs is predicted to change as a result of the quick advancement of AR and VR technologies. Engineers will soon be able to inspect and evaluate strategies by immersing themselves in virtual surroundings, and this will let them ore efficiently spot any potential design problems or enhancements. Due to the ability of engineers located in different locations to collaborate virtually in a single design environment, AR and VR will also make it easier for interdisciplinary teams to collaborate and communicate. This trend will speed up decision-making, improve overall design quality, and improve the design review process. Continued Integration of Expert Systems In KBE, expert systems that AI and machine learning power will continue to be extremely important. These systems gather and make use of expert information to automate intricate design procedures, imitate human judgement, and make wise recommendations. Even more advanced expert systems that can handle difficult design problems will be included in KBE in the future, effectively enhancing the knowledge of human engineers. This will result in fewer manual processes being used and more rapid and precise design iterations, increasing engineering productivity. Emphasis on Sustainable and Eco-friendly Designs The future of KBE will see a greater emphasis on sustainable and eco-friendly designs as environmental concerns gain popularity. AI algorithms will be used to optimise designs for resource utilisation, environmental effect, and energy efficiency. Engineers may create more environmentally sensitive solutions and contribute to a greener future by taking sustainability considerations into account early in the design process. Engineers canuse AI’s capabilities with KBE to achieve sustainable design objectives while guaranteeing the best possible performance and functionality. Navigating the Challenges: Potential Threats in the Realm of KBE Knowledge-Based Engineering (KBE) is a field where technology opens doors to countless possibilities. Still, there are also hidden dangers that we need to deal with. Like any strong tool, automation and AI in KBE have their own set of difficulties. We must cross the perilous waters of data quality to provide accurate and representative data to our AI models. In an effort to achieve transparency and interpretability, we must unlock the mysterious black box of AI decision-making. Fairness, responsibility, and a strong awareness of unforeseen repercussions are demands imposed by looming ethical considerations. Despite these difficulties, we must not lose sight of what engineering is all about—the value only human knowledge can provide. We must be cautious, combining artificial intelligence’s strength with human judgement’s wisdom and encouraging cooperation and machine synergy. By accepting these difficulties head-on, we can unleash KBE’s full potential and guide it towards a future where engineering expands to new heights, and creativity flourishes. Conclusion As we conclude this journey through the realm of Knowledge-Based Engineering (KBE), one thing becomes clear: the future of engineering is brimming with potential. However, we must also acknowledge the challenges of this technological advancement. By embracing these challenges, we can unlock the true power of KBE and shape a future where innovation knows no bounds. Join us at Prescient, where we stand

Read More
Introduction to Knowledge-Based Engineering (KBE) - Understanding the Concept and Benefits
  • April 18 2023
  • admin

Introduction to Knowledge-Based Engineering (KBE) – Understanding the Concept and Benefits

Table of content Introduction What is Knowledge Based Engineering? The Knowledge Based Engineering Process Benefits of Knowledge Based Engineering Conclusion Introduction The world of technology is rapidly evolving, with the latest developments occurring constantly. From automation to preference-based customisation, multiple upgrades in the field of engineering are helping companies deliver better and more efficient products to customers. One such development is the increasing use of Knowledge Based Engineering methodology. In the simplest terms, Knowledge Based Engineering is referred to the combination of artificial intelligence (AI), object-oriented programming, and CAD automation (computer-aided design). In this article, we have curated the complete details for you to understand the concept and benefits of KBE. What is Knowledge Based Engineering? Knowledge Based Engineering (KBE) is the latest engineering methodology that uses a computer-based system to gather, analyse, and use engineering knowledge to design and develop new products. This methodology has revolutionised the engineering industry by offering a more efficient and effective way of creating products. Based on scientific methods and proven technology, this allows automation and customisation of the product design to speed up the process and give better and more efficient results. It eliminates the need for repetitive design work by using design automation, allowing engineers to focus on more complex and creative aspects of the design process. Typically, KBE systems have two components: a knowledge base and a reasoning engine. The knowledge base includes the laws, knowledge figures, and models defining the engineering problem’s domain, and the reasoning engine uses this information to provide conclusions and solutions. KBE has been applied in various industries, including aerospace, automotive, defence, and healthcare. KBE systems include a user interface, a choice of inference rules, and a knowledge base. Data on product design, technical concepts, and production procedures are stored in the knowledge base. The Knowledge Based Engineering Process Often used in place of CAD customisation or CAD automation, the KBE process is entirely based on knowledge acquisition and use. The process involves the steps as follows: 1.Knowledge acquisition Collect knowledge from subject matter experts, books, journals, and other sources, then organise it so a computer can process it. 2.Knowledge modelling Use a knowledge representation language, such as rule-based systems or semantic networks, to model the learned information and determine the connections between the data and the rules that describe the engineering domain. 3.Knowledge integration Include the modelled knowledge in a KBE system with a knowledge base and reasoning engine, and store the knowledge there systematically. 4.Knowledge validation Test the KBE system against well-known solutions to validate it and ensure it generates accurate and trustworthy results. 5.KBE system deployment Install the KBE system that has been validated and instruct engineers on how to use it. Improve efficiency and quality by integrating the system into current engineering procedures. 6.KBE system maintenance Maintaining the KBE system on an ongoing basis will ensure its effectiveness. This will involve tracking its operation, updating the knowledge base and reasoning engine, and considering user feedback. Knowing the benefits of Knowledge-Based Engineering is equally important when you want to implement it to gain extended-duration benefits. Benefits of Knowledge Based Engineering Knowledge-Based Engineering system has multiple benefits, which are discussed below: Increased efficiency KBE automates time-consuming, repetitive procedures, cutting the time and effort needed to complete engineering jobs. Improved quality Improved qualityKBE offers an organised method for engineering, which reduces errors and raises the calibre of the finished product. Reduced costs KBE can aid in lowering the cost of engineering activities by automating procedures and enhancing quality. Enhanced collaboration KBE makes it easier for engineering teams to collaborate and communicate, allowing them to exchange best practices and information. Faster product development By automating design and analysis tasks and shortening the prototyping process, KBE helps quicken product development cycles. Increased innovation KBE may promote innovation by enabling engineers to explore more innovative solutions and giving them access to a wider variety of design and analysis tools. Improved decision-making KBE can help decision-making by giving engineers access to more precise and trustworthy data and analysis results. Better documentation By automatically gathering and arranging engineering knowledge and data, KBE can help enhance documentation by lowering the possibility of data loss or improper management. Improved customer satisfaction KBE can increase customer satisfaction by speeding up product development, cutting costs, and raising product standards. Conclusion Knowledge Based Engineering (KBE) is a mentality emphasising the value of knowledge and experience in engineering, not merely a technology or tool. KBE helps engineers be more productive, inventive, and successful while reducing the risk of mistakes and delays by fusing human knowledge with artificial intelligence. We at PreScient are dedicated to assisting businesses of all sizes and sectors in realising the full potential of KBE since it is the future of engineering. Whether you’re just getting started with KBE or hoping to advance your skills, our team of professionals can offer the advice, resources, and assistance you require to succeed. To find out more, call us right away.

Read More
Evaluating ROI: Measuring the Impact of Additive Manufacturing Implementation
  • March 27 2023
  • admin

How Inspection And Validation Can Improve The Reliability Of Additive Manufacturing Processes

Table of content What Is Meant by Inspection and Validation? 4 Steps to improve Inspection and Validation How Can You Implement Inspection and Validation in Your Additive Manufacturing Process? Conclusion Do you want to make the processes you use for additive manufacturing more reliable? If so, you’ve come to the right place. This article will talk about how you can make your 3D printing more reliable by using inspection and validation.The additive manufacturing method, which is sometimes called “3D printing,” is a business that is growing quickly and changing the way we make things. 3D printing is a popular way to make prototypes and custom parts because it can make complicated shapes and patterns. Still, as with any manufacturing process, it’s essential to make sure that the final product meets quality and reliability standards. At this point, there needs to be an inspection and validation. What Is Meant by Inspection and Validation? During the inspection, the printed item is looked at to make sure it meets certain standards, such as size, finish, and material quality. Validation, on the other hand, is the process of testing the part to make sure it works as expected under different conditions, like stress or heat.Additive manufacturing might be more reliable if there were better ways to inspect and test products. 4 Steps to improve Inspection and Validation 1. Catching Errors Early Inspection is a key part of the process of additive manufacturing because it lets you find mistakes early on. This is important because it could save you money and time in the long run. For instance, if a part is printed in the wrong size, it may be caught early and fixed so that the whole part doesn’t have to be made again or thrown away. If you catch problems early, you may save money and improve the overall quality of your printed parts. 2. Ensuring consistent quality Checking and validating processes make sure that the quality of your printed parts is always good. This is very important if you want to make consistent products that meet your customers’ needs. By regularly testing and certifying your parts, you can find any quality problems and fix them before they get worse. This could make your customers happy and improve the quality of your goods as a whole. 3. Identifying areas for improvement By looking at and testing your additive manufacturing process, you may find ways to make it better. For example, if parts keep failing a certain validation test, you can find out why and make any changes to the printing process that are needed. This could help you improve the performance and dependability of your printed parts, making your customers happier and making your goods work better overall. 4. Increasing Confidence in the Final Product If you use inspection and validation techniques, you might be able to trust the end results more. This is very crucial in fields like medicine and aviation, where dependability is significant. Testing and validation make sure that your products meet the right standards and specifications and work as expected in different situations. This could help you meet client needs, get industry certifications, and build a stronger reputation as a reliable provider. How Can You Implement Inspection and Validation in Your Additive Manufacturing Process? 1. Develop a Quality Control Plan For your additive manufacturing process to work, you need a quality control plan that includes inspection and validation steps. This plan should say what will be checked and how validation tests will be done. The strategy should also say how much error is okay for each of the specs that are being tested. A good plan for quality control can help make sure that everyone who works on the part knows what it is supposed to do. 2. Invest in the Right Equipment For inspection and validation procedures to work, you need to buy the right tools. Measurement tools, test equipment, and software are all examples of this type of equipment. You should choose the equipment based on how your production process works and how precise it needs to be. For example, you might need to buy a coordinate measurement machine (CMM) if you need to figure out the size of something. 3. Train Your Team It’s necessary to show your staff how to use the equipment and go through the same inspection and validation steps every time. During this training, the contents of the quality control plan, the tools and equipment that are used, and the right way to do inspections and validation tests should all be talked about. The training should also cover what to do if a part doesn’t meet the requirements, such as writing down the problem and fixing it. Conclusion Inspection and validation are two important steps that help make additive manufacturing more reliable. You can make 3D printing more reliable by catching mistakes early, making sure the quality is always the same, looking for ways to improve, and having more faith in the end result. Do you want to use additive manufacturing more effectively? Prescient Technologies can assist you! Our software development services could completely change how you use 3D printing and other methods of “additive manufacturing.”So, make a plan for quality control, get the right tools, and train your staff. Then, you’ll be on your way to better 3D-printed products. References: TUVSUD ESCIES Additive Manufacturing Internet of Business

Read More
Designing For Additive Manufacturing: Best Practices For Successful Product Development
  • March 27 2023
  • admin

Designing For Additive Manufacturing: Best Practices For Successful Product Development

Table of content Top 8 Best Practices For Successful Product Development Conclusion Top 8 Best Practices For Successful Product Development 1. Start with a thorough understanding of the technology Additive manufacturing has changed how complex parts are made, making it possible to make structures that were once impossible to make. But if you want to make good designs for 3D printing, you need to know how the technology works.For example, you need to know about the build volume, resolution and precision of each 3D printing technology and choose the right materials for your design. Also, you need to think about how the parts will be positioned and held up during the printing process. By thinking about these things, you can make designs that work well with the technology and use all of its features. 2. Optimise parts for the build process Putting together a 3D printer might come with its challenges, which you should think about. For example, you have to think about how the pieces are set up on the build plate to make sure they are supported well when printing. 3. Reduce material usage 3D printing is better than traditional ways of making things in a lot of ways, like being able to use less material. By designing parts to use less material, you can make products that are more environmentally friendly and make less waste. One way to do this is to build with lattices, which are strong but use less material. Putting these structures into designs can help make parts that are light but strong, useful, and long-lasting. 4. Consider post-processing requirements When a 3D print is finished, it may need to be cleaned or finished. It is called “post-processing”. Keep these needs in mind when you’re designing, since they could make the production process take longer and cost more. By making parts that are easy to clean and polish, you can save time and money during post-processing. Also, if components are designed with as few support structures as possible, they may need less post-processing. 5. Optimise for material properties When designing parts for 3D printing, you need to think about how the materials work. During the printing process, for example, some materials may be more likely to bend or change shape, while others may be more likely to break or crack. If the designs work well with the properties of the chosen material, the parts will be strong and useful. 6. Use design software that supports 3D printing A key part of the DFAM process is the use of design software. If you use software made just for 3D printing, you can make designs that work best with the technology. These software tools can help you find problems, like places that might need more support, and give you ideas on how to fix them. 7. Incorporate tolerances Tolerances are the allowed differences from a given dimension that designers must take into account when making things for additive manufacturing. Since the accuracy and precision of 3D printing processes vary, planning with tolerance in mind may help avoid problems like pieces that are too tight or too loose. Tolerances in the design can also help make sure that the pieces fit together right and work as planned. 8. Collaborate with experienced 3D printing partners Working with people who have already used 3D printing can help you make your designs better. These partners can tell you important things about what you can and can’t do with 3D printing technology. They can also show you ways to make your printing more effective and efficient. 9. Test and lterate Testing and iterating are important parts of making a good product, and they are even more important when designing for additive manufacturing. Because 3D printing technologies are always changing, it’s important to keep up with the latest changes and to keep testing and improving designs. With 3D printing, prototypes can be changed and tested quickly, so design flaws can be found and fixed quickly before the product goes into production. Conclusion To design for additive manufacturing, you have to change the way you think about things. When designing for efficient and effective production, 3D printing’s unique strengths and weaknesses must be taken into account. By following the best practices in this article, you can make sure that their parts are good for 3D printing. This will lead to faster production, less material waste and more environmentally friendly products.If you want to elevate your additive manufacturing processes and stay ahead in the competitive market, Prescient Technologies can be your go-to partner. With our state-of-the-art software development services, we can help you get revolutionary results and improve how you use 3D printing and other “additive manufacturing” techniques.Get in touch with us today and take your product development to the next level. References: Alpha Bigrep Radius

Read More
The Advantages And Limitations Of Additive Manufacturing: A Comprehensive Overview
  • March 27 2023
  • admin

The Advantages And Limitations Of Additive Manufacturing: A Comprehensive Overview

Table of content Top 6 Advantages of Additive Manufacturing: Top 6 Limitations of Additive Manufacturing Conclusion In the last few years, 3D printing and additive manufacturing have enhanced the scope of production. 3D printing is the process of putting layers of material together to make things that are three-dimensional. This technology is better than the old ways of making things in a lot of ways, but it comes with its own set of limitations. Here, we’ll look more closely at the top six pros and cons of additive manufacturing. Top 6 Advantages of Additive Manufacturing: 1.Reduced Time and Cost One benefit of additive manufacturing is that it makes production faster and cheaper. Usually, when making a new product, you start by making a prototype, then the tools, and finally the finished product. This process could take a long time and cost a lot of money. But additive manufacturing makes the process go faster. 2.Complex Geometries With additive printing, you can make things that would be hard to make in any other way. Additive manufacturing can be used to make structures with hollow channels inside and curved surfaces.3 3.Customization and Personalization Additive manufacturing makes it possible to change and personalize products. In traditional manufacturing, the same product is made over and over again, and there is no way to change it. Customers can use additive manufacturing to make one-of-a-kind items with their own specs, sizes, and shapes. 4.Reduced Material Waste If additive manufacturing is used, there may be less need to throw away materials. With traditional ways of making things, like subtractive manufacturing, a lot of materials are wasted. In additive manufacturing, just the right amount of material is used. This cuts down on waste and saves money on materials. 5.Faster Prototyping One more benefit of additive manufacturing is that prototyping can be done more quickly. When standard production methods are used, prototyping can take a long time and cost a lot of money. Additive manufacturing can be used to make prototypes quickly and cheaply. You can easily change designs, try out new materials and shapes, and repeat the process. This makes it easier and cheaper to get products to market faster. 6.Simplified Supply Chains Since additive manufacturing makes it possible to make things only when they are needed, supply chains may be easier to run. Instead of making a lot of the same thing and storing it in warehouses, additive manufacturing lets people make things as they need them. This might make people need less storage space and be less likely to keep things they don’t need. Top 6 Limitations of Additive Manufacturing: 1.Limited Materials One problem with additive manufacturing is that it can only print with a certain number of materials at one time. Even though the number of materials is growing, it is still very small compared to conventional methods. This limitation could affect how well the final product works, how long it lasts, and how well it lasts. 2.Surface Quality A glaring limitation of additive manufacturing is that the surface quality of the parts is still not very good. Especially, when complex structures are made, a smooth surface finish is difficult to achieve. 3.Size Limitations With additive manufacturing, the size of objects may be limited. How big an item is depends on how big the printer is and how much room it has to work with. Larger things may need to be printed in parts before they can be put together. This will take time and make the process harder. 4.Complexity Limitations Using additive manufacturing, you can make buildings with complex shapes, but the shapes can only be complicated. Complex designs can be hard to make because they often need more support structures or post-processing steps, which take more time and money. 5.Limited Scale Another problem with additive manufacturing is that it can only make small quantities. Additive manufacturing is great for making small batches of goods, but it’s not ready yet to make a lot of things at once. This is because additive manufacturing is a slow method that might take a long time to make a lot of parts. 6.Environmental Impact When you use additive printing, it might be hard to get rid of things like support structures and failed prints. Also, if the materials used in additive manufacturing are not recycled or thrown away in the right way, they could hurt the environment. Conclusion In conclusion, additive manufacturing is faster, cheaper, more flexible, and wastes less material. It does, however, have a number of flaws, including a paucity of materials, poor surface quality, small size, and complexity issues. Despite these problems, additive manufacturing is an important part of the manufacturing industry and will continue to change and improve over time. Do you want to go to the next level with additive manufacturing? We can help you at Prescient Technologies. Our software development services could change the way you think about 3D printing and other methods of “additive manufacturing.” References:

Read More
Maximizing the Benefits Of Additive Manufacturing: Strategies For Implementation
  • February 27 2023
  • admin

Maximizing the Benefits Of Additive Manufacturing: Strategies For Implementation

Table of content Top 8 Strategies For Implementation Conclusion Want to change the way you make things and take your business to the next level? AM, or additive manufacturing, might be what you need. AM has the power to change your production processes because it can use digital designs to make 3D objects. It creates shorter lead times, lower costs, a better design, and less material waste. But how do you ensure that your business gets the most out of AM? Don’t worry, these top 8 strategies for implementation will help you out. Top 8 Strategies For Implementation 1. Assessing Your Business Needs First, you need to figure out what your business needs. On top of that, you need to figure out how AM could be used and what it could do for you. You will also need to look at how you make things now to see where AM can be used and where it might not be the best fit. Once you know exactly what you want, it is time to choose the right technology. 2. Selecting the Right Technology To get the results you want, you need to choose the right AM technology. With so many choices, it is important to look at the pros and cons of each technology before making a decision. Cost, speed, accuracy, and the right material can be the things to think about. By working with AM service providers who have a lot of experience, you can make smart choices about the technology to use. 3. Designing for Additive Manufacturing To get the most out of AM, parts must also be designed to work best with it. You will need to use the best methods for making parts to do this. It means picking materials that use less material and needs less post-processing. Do not forget that the freedom to design is one of the most exciting things about AM. Making shapes with complex geometries was impossible with traditional manufacturing. 4. Overcoming Implementation Challenges Putting AM into place is not always easy, and problems can come up. From high costs to following quality and rules, many things could go wrong. You should have a thorough implementation plan and work with experienced AM service providers. Put money into training and developing your workforce. With this, you can get past any problems and use AM to its fullest potential. 5. Training and Workforce Development To get the most out of AM, it is important to invest in the knowledge and skills of your staff. Creating a skilled workforce requires a lot of training and opportunities. If you don’t know where to start, it is better to work with experienced AM service providers. They can train your team on what they need to know and how to do it. 6. Scaling Up and Maximizing ROI After you have added AM to your manufacturing process, it’s time to get the most out of it. One great way to do this is to make more of them. Some ways to scale and maximize ROI are to invest in automation and improve your production processes. You should also use data and analytics. You can get the most out of AM and take your business to the next level by always making your approach better. 7. Establishing Quality Control Measures You don’t want to leave the quality of your AM-produced parts to chance. That is why it’s crucial to establish a robust quality control process. After all, your reputation is on the line, and you don’t want to risk producing faulty or substandard parts. By maintaining strict quality control, you can ensure that all parts meet the necessary standards. Trust us; it is worth the investment. By prioritizing quality control, you can cut the risk of defects, reduce waste, and produce consistent, high-quality parts that meet your customers’ expectations. 8. Continuous Improvement and Innovation Don’t get complacent once you’ve implemented AM in your business. Embrace a mindset of continuous improvement and innovation to stay ahead of the game. Always strive to improve your processes and technology and gather feedback from your team and customers. Explore new and creative ways to optimize and innovate. By staying ahead of the game, you can keep a competitive edge and unlock the full potential of AM. Stay on the lookout for emerging AM technologies, materials, and techniques. In short, stay in the loop with the latest trends and innovations. This way, you can future-proof your business and be ready for whatever challenges and opportunities lie ahead. Conclusion Get ready to experience the benefits of additive manufacturing (AM) in your business. But before you dive into it, it is important to plan carefully and take a few steps to ensure success. Start by selecting the right technology for your business needs and designing for AM. Overcome any challenges that may arise during the implementation process. Don’t forget to invest in your workforce and train them in AM technologies to develop a culture of innovation. Once AM is integrated into your business, you can explore ways to scale up production and maximize your return on investment. References:

Read More
Cloud Enablement for CAD Applications
  • August 26 2022
  • admin

Cloud Enablement for CAD Applications

Table of content Current State of Cloud-based CAD Technological Issues with CAD on the Cloud Adoption Issues Way Forward Over the last decade, multiple manufacturing-related applications have moved to the cloud to reduce hardware investments and to avail of the benefits of IT resource aggregation. CAD, which plays a crucial role in product development, is often considered a potential candidate for cloud enablement. As CAD software consumes dedicated high-end compute and graphics resources, a definite business case exists to move CAD on cloud. Moving CAD on cloud can bring multiple benefits like increased flexibility, better collaboration, and ultimately reduced cost of hardware and maintenance. AutoCad Cloud is one such example of cloud-based CAD platform which enables creating, editing, viewing, and sharing drawings without having to install it on your system. Almost all CAD ISVs are considering some form of cloud enablement, but it has not picked the pace for multiple reasons. The following sections discuss these issues and possibly how they will evolve. Current State of Cloud-based CAD Cloud has popularized the on-demand access to resources and usage-based charges. It has helped the customers to transition the cash flow from an upfront fixed cost to a variable cost. Almost all types of software can now be licensed in this model. CAD software ISVs are following this trend by shifting from perpetual license + AMC to an annual subscription model with support. For the cloud, adoption evolution can be seen in all three types of cloud adoption – IaaS, PaaS, and SaaS. There are visible progressions in each type, and a few ready solutions are already available in the market. However, there remain technology hurdles and user adoption issues. Technological Issues with CAD on the Cloud Moving CAD on cloud requires some critical pieces to be recreated to suit the cloud architecture. It would take a significant effort to redevelop these pieces and bring them to par with current levels. CAD ISVs strive to address the above and many other technical issues, with few breakthroughs. However, user adoption is still low due to various process-related issues. Adoption Issues CAD Applications have been used by various product development OEMs and their suppliers for over a quarter century. These organizations have evolved custom workflows and security processes around CAD. Moving to cloud-based CAD will need multiple adjustments to these processes, which could be a significant hurdle in adoption. In addition to the above points, there are factors like usability due to latency issues and significant concerns of the customers in the form of vendor lock-in. These have been discussed at many forums, hence not elaborated here. Way forward As cloud technology advances, some challenges could get addressed or become irrelevant. However, looking at the overall picture, cloud adoption is likely to evolve on two fronts –

Read More
  • 1
  • …
  • 10
  • 11
  • 12
  • 13
  • 14
  • …
  • 17

Tags

3D model 3D Printing Additive Manufacturing algorithms Artificial intelligence Ble and Beyond CAD CAD Software Development CAE Cloud Computing customization Digital Factory Digital transformation Digitization Engineering services Fixtures geometric modeling geometry GPS Tracking image processing image recognition Industry 4.0 insourcing Jigs Knowledge-Based Engineering machine manufacturing MES - Manufacturing Execution System mesh model modeling non-parametric optimization Outsourcing parametric point cloud Product Configurator product development Remote Machine Monitoring Reverse Engineering Smart Machines solid modeling Ultra-Wide Band Vision-Based Inspection vision based inspection
Shape
Logo

We empower through innovation, collaboration, and transformative solutions

Services

  • factoryCONNECT
  • powerCONNECT
  • machineCONNECT
  • CAD Software Development
  • Knowledge Based Engineering
  • Vision Based Inspection
  • iNetra

Company

  • About Prescient
  • Knowledge Center
  • Case Study
  • Webinar
  • Blog
  • CSR
  • Careers
  • Contact Us

Contact Info

  • B507, 4th Floor, Teerth Technospace, Pune 411045. Maharashtra, India
  • Office no 25. MI, Troy - Troy Liberty Center 100 West Big Weaver Road, Suite 200, Troy, Michigan 48084
  • contact@pre-scient.com
  • +91-2066477900

© 2025 Prescient Technologies | All Rights Reserved

  • Legal
  • Privacy Policy
Get a free guide




    Download Case Study