• Events
    • Blog
    • CSR
    • About Us
    • Careers
  • Contact
Logo
  • Digital Factory
    Products
    • powerCONNECT
    • machineCONNECT
    • Digital Logbook
    • iNetra
  • Digital Factory
    Services
    • Knowledge Based Engineering
      • Product Configurator
      • Design Automation
    • Vision Based Inspection
    • Digital Thread
    • IIoT Solutions
    • Industrial Security
      • Vehicle Tracking System
      • People Tracking
      • Indoor Asset Tracking
    • Engineering Services
      • Reverse Engineering
      • CAD Design Services
      • Product Design
      • Tool & Fixture Design
      • Advance Engineering
    • Dimension Inspection
    • End of Line Inspection
    • Defect Detection
    • Part Segregation
  • CAD PLM
    Software Development
    • Cad Software Development
    • Knowledge Based Engineering
      • Product Configurator
      • Design Automation
    • CAD Plugin Development
    • PLM Connectors
  • CAD PLM
    Technologies
    • Revlib
    • Mesh Boolean
    • Mesh Tools
    • Exchange

Path to Product Development

  • Home
  • Blog Details
path-to-product-development
  • February 19 2019
  • admin

If you are an engineering professional, most likely you are aware of how a physical product comes to life. From the early days of sketching and blueprints, manufacturing of a commodity has come a long way. The modern methodology of creating a product has not only changed drastically, but it has become way more efficient and precise in its approach. Today’s engineer lives and thrives in the world of 3-dimensional models. Whatever masterpiece a designer has in his mind, he has the tools and system to give it life. And it is not just limited to inception of a new idea being turned to a product; it has made the art of reverse engineering being implemented more than ever.

So what are the factors that have revolutionized this craft?

It is the safe to say that with the invention of new tools, techniques and computer, the road to new product development has become more smooth, accurate and flexible. Although a professional can get deep into the subject matter, this article gives a brief overview of the product development from technical perspective.

The footsteps to a new product can be summarized in the following sequence.

To put it in words, here is how the entire sequence goes:

  • Scanning: Whether you have an entirely new idea on your mind, or you want to base your idea on an already existing product; you need a reference. Your reference can be either technical manuals from the manufacturer or the physical product itself. The first step is to scan the product using 3D scanners. 3D scanning technology comes in many shapes and forms. Scanners capture and store the 3D information of the product. The scanned information gets stored in the form of closely spaced data points known as Point Cloud.
  • Point Cloud: A point cloud is a collection of data points defined by a given coordinates system. In a 3D coordinates system, for example, a point cloud may define the shape of some real or created physical system.
  • Mesh: Point clouds are used to create 3D meshes. A mesh is a network that constitutes of cells and points. Mesh generation involves point clouds to be connected to each other by the virtue of vertices, edges and faces that meet at shared edges. There are specific softwares for carrying of meshing function.
  • 3D Model: Once the meshed part is generated, it goes through required software applications to be transferred to Computer Aided Design (CAD) tools to get transformed into a proper 3D CAD model. 3D model is the stage where whole sorts of applications such as sewing, stitching, etc, are implemented to create a prototype.
  • Testing: A prototype goes through numerous tests in this phase, to check for limitations and possible calibrations if necessary. This is done to determine the optimum stage where the prototype can be turned to a product.
  • Product: This is where the entire process comes to an end. Once a prototype is evaluated and finalized, it is sent for production in order to introduce it to the market.

This introductory part gives you a summary of product development and the related technical terms. In the next chapters, we will dive deep and go through all the mentioned stages, one by one.

Previous Post
What is CAD | Types of CAD Models and CAD Formats
Next Post
Types & Benefits of 3D Scanners and 3D Scanning Technologies

Tags

3D model 3D Printing Additive Manufacturing algorithms Artificial intelligence Ble and Beyond CAD CAD Software Development CAE Cloud Computing customization Digital Factory Digital transformation Digitization Engineering services Fixtures geometric modeling geometry GPS Tracking image processing image recognition Industry 4.0 insourcing Jigs Knowledge-Based Engineering machine manufacturing MES - Manufacturing Execution System mesh model modeling non-parametric optimization optimization problems Outsourcing parametric point cloud Product Configurator product development Reverse Engineering Smart Machines solid modeling Ultra-Wide Band Vision-Based Inspection vision based inspection
Shape
Logo

We empower through innovation, collaboration, and transformative solutions

Services

  • powerCONNECT
  • manchineCONNECT
  • Cad Software Development
  • Knowledge Based Engineering
  • Vision Based Inspection
  • iNetra

Company

  • About Prescient
  • Knowledge Center
  • Case Study
  • Webinar
  • Blog
  • CSR
  • Careers
  • Contact Us

Contact Info

  • Office no 25, MI, Troy - Troy Liberty Center 100 West Big Beaver Road, Suite 200, Troy, Michigan 48084
  • Sunnyvale, USA
  • contact@pre-scient.com
    912066477900

© 2023 Prescient Technologies | All Rights Reserved | Powered by WebwideIT

  • Legal
  • Privacy Policy