• Events
    • Blog
    • CSR
    • About Us
    • Careers
  • Contact
Logo
  • Digital Factory
    Products
    • powerCONNECT
    • machineCONNECT
    • Digital Logbook
    • iNetra
  • Digital Factory
    Services
    • Knowledge Based Engineering
      • Product Configurator
      • Design Automation
    • Vision Based Inspection
    • Digital Thread
    • IIoT Solutions
    • Industrial Security
      • Vehicle Tracking System
      • People Tracking
      • Indoor Asset Tracking
    • Engineering Services
      • Reverse Engineering
      • CAD Design Services
      • Product Design
      • Tool & Fixture Design
      • Advance Engineering
    • Dimension Inspection
    • End of Line Inspection
    • Defect Detection
    • Part Segregation
  • CAD PLM
    Software Development
    • Cad Software Development
    • Knowledge Based Engineering
      • Product Configurator
      • Design Automation
    • CAD Plugin Development
    • PLM Connectors
  • CAD PLM
    Technologies
    • Revlib
    • Mesh Boolean
    • Mesh Tools
    • Exchange

Points to consider while developing regression suite for CAD Projects

  • Home
  • Blog Details
points-to-consider-while-developing-regression-suite-for-cad-projects
  • March 20 2019
  • admin

As the development of software makes its progress, there comes a stage where it needs to be evaluated before concluding it as the final output. This phase is usually known as testing. Testing detects and pinpoints the bugs and errors in the software, which eventually leads to rectification measures. There are instances where the rectifications bring in new errors, thus sending it back to another round of testing, hence creating a repeating loop. This repeated testing of an already tested application to detect errors resulting from changes has a term — Regression Testing.

Regression testing is the selective retesting of an application to ensure that modifications carried out has not caused unintended effects in the previously working application.

In simple words, to ensure all the old functionalities are still running correctly with new changes.

This is a very common step in any software development process by testers. Regression testing is required in the following scenarios:

  • If the code is modified owing to changes in requirements
  • If a new functionality is added
  • While rectifying errors
  • While fixing performance related issues

Although, every software application requires regression testing, there are specific points that apply to different applications, based on their functioning and utility. Computer-Aided design or CAD software applications require specific points to keep in mind before undergoing regression testing.

Regression testing can be broadly classified into two categories, UI Testing and Functionality Testing. UI testing stands for User Interface which is basically testing an applications graphical interface. Numerous testing tools are available for carrying out UI testing. However, functional testing presents situation for us. This content focuses on the points to take care while carrying out functional regression testing.

Here are most effective points to consider for functional regression testing:

  • It is important to know what exactly needs to be tested and the plans or procedures for the testing. Collect the information and test the critical things first.
  • It is important to be aware of market demands for product development. Document or matrix should be prepared to link the product to the requirement and to the test cases. Matrices should be modified as per the changes in requirement.
  • Include the test cases for functionalities which have undergone more and recent changes.
    It’s difficult to keep writing (modifying) test cases, as the application keeps on getting updated often, which leads to some internal defects and changes into the code which in turn might break some already existing functionalities.
  • It is preferred to run the functionality testing in the background mode (non-UI mode) because often it is faster and eliminates problems associated with display settings on different machines.
  • One needs to lay down precise definitions of the output parameters that are of interest. Anything from the number of faces, surface area, volume, weight, centre of gravity, surface normal, curvature at a particular point etc. It is always a good idea to have a quantifiable output parameter that can be compared.
  • It is often advisable to develop a utility to write the parameters that are of interest in an output file it could be text, CSV or xml file.
  • Creating baseline versions of output data files is a good idea to visually see every part for which the baseline data is created.
  • Developing automation script enables the entire test suite to run without any manual intervention and the results can be compared.
  • Compare the output data generated with the baseline version, for every run of test case, for it is very important to keep in mind that if there are doubles or floats in the output data, tolerance plays a very important role.
  • Some areas in the application are highly prone to errors; so much that they usually fail with even a minute change in code. It is advisable to keep a track of failing test cases and cover them in regression test suite.

Failure to address performance issues can hamper the functionality and success of your application, with unwelcome consequences for end users if your application doesn’t perform to expectations.

Tags algorithmsCADcustomization
Previous Post
New Application Development – Addon vs Standalone
Next Post
Outsourcing Product Development

Tags

3D model 3D Printing Additive Manufacturing algorithms Artificial intelligence Ble and Beyond CAD CAD Software Development CAE Cloud Computing customization Digital Factory Digital transformation Digitization Engineering services Fixtures geometric modeling geometry GPS Tracking image processing image recognition Industry 4.0 insourcing Jigs Knowledge-Based Engineering machine manufacturing MES - Manufacturing Execution System mesh model modeling non-parametric optimization optimization problems Outsourcing parametric point cloud Product Configurator product development Reverse Engineering Smart Machines solid modeling Ultra-Wide Band Vision-Based Inspection vision based inspection
Shape
Logo

We empower through innovation, collaboration, and transformative solutions

Services

  • powerCONNECT
  • manchineCONNECT
  • Cad Software Development
  • Knowledge Based Engineering
  • Vision Based Inspection
  • iNetra

Company

  • About Prescient
  • Knowledge Center
  • Case Study
  • Webinar
  • Blog
  • CSR
  • Careers
  • Contact Us

Contact Info

  • Office no 25, MI, Troy - Troy Liberty Center 100 West Big Beaver Road, Suite 200, Troy, Michigan 48084
  • Sunnyvale, USA
  • contact@pre-scient.com
    912066477900

© 2023 Prescient Technologies | All Rights Reserved | Powered by WebwideIT

  • Legal
  • Privacy Policy