The previous sections dealt with the initial and middle stages of reverse engineering. This section highlights a stage which is undoubtedly crucial for product development. After a meshed part is aligned, it goes through either—surface modeling in tools such as Polyworks, which generates a non-parametric model (IGES or STEP format) or parametric modeling where a sketch of the meshed part is created instead of putting it through surfacing (.PRT format). The resultant is generally called, 3D computer aided model or CAD model.

CAD is the acronym for Computer Aided Design. It covers different variety of design tools used by various professionals like artists, game designers, manufacturers and design engineers.

The technology of CAD systems has tremendously helped users by performing thousands of complex geometrical calculations in the background without anyone having to drop a sweat for it. CAD has its origin in early 2D drawings where one could draw objects using basic views: top, bottom, left, right, front, back, and the angled isometric view.  3D CAD programs allow users to take 2D views and convert them into a 3D object on the screen.  In simple definition, CAD design is converting basic design data into a more perceptible and more understandable design.

Each CAD system has its own algorithm for describing geometry, both mathematically and structurally.

Everything comes with its own varieties and CAD modeling is no stranger to it. As the technology evolved, CAD modeling came up in different styles. There are many methods of classifying them, but a broad general classification can be as follows:

• 2 dimensional or 2D CAD: The early version of CAD that most of us are aware of. These are 2-dimensional drawings on flat sheet with dimensions, layouts and other information needed to manufacture the object.
• 3 dimensional or 3D CAD: The purpose of both 2D and 3D models is the same. But what sets 3D models apart is its ability to present greater details about the individual component and/or assembly by projecting it as a full-scale 3-dimensional object. 3D models can be viewed and rotated in X, Y, or Z axes. It also shows how two objects can fit and operate which is not possible with 2D CAD.

3D models can be further classified into three categories:

• 3D Wire-frame Models: These models resemble an entire object made of just wires, with the background visible through the skeletal structure.
• Surface Models: Surface models are created by joining the 3D surfaces together and look like real-life objects.
• Solid Models: They are the best representation of real physical objects in a virtual environment. Unlike other models, solid models have properties like weight, volume and density. They are the most commonly used models and serve as prototypes for engineering projects.

Different professionals use different software, owing to different reasons like cost, project requirements, features etc. Although, software comes with their own file formats, there are instances where one needs to share their project with someone else, either partners or clients, who are using different software. In such cases, it is necessary that both party software understand each other’s file formats. As a result of this situation, it is necessary to have file formats which can be accommodated in variety of software.

• Native File Formats: Such CAD file formats are intended to be used only with the software it comes with. They cannot be shared with any other software which comes with their own CAD formats.
• Neutral File Formats: These file formats are created to be shared among different software. Thereby it increases interoperability, which is necessary.

Although there are almost hundreds of file formats out there, the more popular CAD formats are as follows:

STEP: This is the most popular CAD file format of all. It is widely used and highly recommended as most software support STEP files. STEP is the acronym for Standard for the Exchange of Product Data.

IGES: IGES is the acronym for Initial Graphics Exchange Specification. It is an old CAD file format which is vendor-neutral. IGES has fallen out lately since it lacks many features which newer file formats have.

Parasolid: Parasolid was originally developed by ShapeData and is currently owned by Siemens PLM Software.

STL: STL stands for Stereolithography which is the format for 3D information created by 3D systems. STL finds its usage mostly in 3D printers. STL describes only the outer structure or surface geometry of a physical object but doesn’t give out color, texture and other attributes of an object.

VRML: VRML stands for Virtual Reality Modeling Language. Although it gives back more attributes than STL but it can be read by a handful of software.

X3D: X3D is an XML based file format for representing 3D computer graphics.

COLLADA: COLLADA stands for Collaborative Design Activity and is mostly used in gaming and 3D modeling.

DXF: DXF stands for Drawing Exchange Format which is a pure 2D file format native to Autocad.

Computer-aided design or CAD has pushed the entire engineering process to the next level. One can actually mould or fold, modify or make a new part from scratch, all with the help of CAD modeling software. The many uses of CAD are as follows:

• CAD is used to generate design and layouts, design details and calculations, 3-D models.
• CAD transfers details of information about a product in a format that can be easily interpreted by a skilled professional, which therefore facilitates manufacturing process.
• The editing process in CAD is very fast as compared to manual process.
• CAD helps in speeding up manufacturing process by facilitating accurate simulation, hence reducing time taken to design.
• CAD can be assimilated with CAM (Computer Aided Manufacturing), which eases up product development.

Every CAD design/model, upon completion, is stored in a respective file format. A 3D file format stores information about 3D models in plain text or binary data. The 3D formats encode a model’s

geometry, which describes its shape,

scene, which includes position of light and peripheral objects;

appearance, which means colors and textures;

and animations, which defines how a 3D model moves.

Not every 3D format stores all such data. Each software comes with its 3D file formats. However, every software has a different file format due to many reasons such as cost, feature, etc. It is necessary for any two software to enable interchangeability/interoperability to make things work. Some of the popular 3D file formats are STL, OBJ, FBX, COLLADA, etc. Each industry comes with its version of 3D file formats. This article gives a brief description of 3D file formats.

##### SALIENT FEATURES OF 3D FILE FORMATS

Considering there are different file types, it is essential to understand the various properties. Different file types allow CAD model viewing in different ways. Some CAD files are limited to only 2D viewing to show the end customer. Following are the main features of 3D file formats:

Proprietary or neutral

The two main types of file format are – proprietary and neutral. All CAD design software uses a proprietary file type. This file type is specific to that particular software. Generally, such file types can only be viewed using the same software it was created with. However, it won’t open in a completely different design program. Proprietary files could be used in intercompany tasks.

Neutral files, on the other hand, are designed to be interoperable. Hence they can be viewed on a multitude of programs. Neutral data come in handy if the document is being distributed to end-users who don’t use CAD software.

Precise or tessellated

CAD designs are displayed in two different ways, namely, precise or tessellated. The difference lies in the fact that the product that is viewed while designing looks quite different from the actual product in real life. It is particularly noticeable in the case of lines and edges that form the product shape. This differentiates between precise drawings versus tessellated drawings.

To create a product, CAD software uses precise lines and angles to complete complex manufacturing processes. Such specific instructions have to be included in a file format to edit the actual drawing or change its design. While displaying a CAD drawing for visual purposes, the lines and edges are tessellated.

Type of assembly

Multi-part designs present a complicated situation while choosing a file format. Depending on the type of file format, multi-part product design may be limited to one single file for the whole assembly. Alternatively, designers also opt for separate files for each component. Awareness of how a particular software will display a multi-part product or if it will display a multi-part product is essential.

Parts Listings

CAD designs accompany models with a list of parts. Different 3D file formats come up with different ways of showing parts list. Two main types of parts list displays are Bill of Material (BOM) and flat list. A bill of material showcases a single part and all its positions in a drawing. A flat list shows all parts individually.

Now that the different features of 3D CAD file formats have been explained, let us walk through some of the popular and most used file formats out there.

##### NEUTRAL FILE FORMATS

To counter interoperability, neutral file formats, also called open source formats, are used as intermediate formats for converting between two proprietary formats. Naturally, these formats are widely used nowadays. Two known examples of neutral formats are STL (with a .STL extension) and COLLADA (with a .DAE extension).  They are used to share models across CAD software.

3D CAD file formats generally fall into two categories: Native or Neutral file formats.

• Native file formats are exclusive to particular CAD software, which can be used with the respective software only.
• Neutral or Standards were explicitly created to enable interoperability, which helps the exchange of files between different CAD software. Neutral file formats allow easier transfer of files with someone who uses different CAD software.
##### DIFFERENT 3D FILE FORMATS
• STEP: STEP is the most recommended and widely used of 3D file Formats. It is an ISO 10303-21 certified standard. Most of the software support STEP importing and exporting.
• IGES: IGES is the abbreviation for Initial Graphics Exchange Specification. It is a vendor-neutral file format. Using IGES, a CAD user can exchange 3D models in the form of circuit diagrams, wireframe, or solid models. Applications backed by IGES include traditional engineering drawings, analysis models, and other manufacturing functions
• Parasolid: Parasolid, initially developed by ShapeData, is now owned by Siemens PLM Software. It is licensed to other companies for use in their 3D computer graphics software products.
• STL: STL, which stands for stereolithography, is the universal format for pure 3D information. It is used in 3D printers and somewhat loved by CAM. STL denotes only the surface geometry of a 3D object without any representation of color, texture, or other common CAD model attributes.
• VRML: VRML stands for Virtual Reality Modeling Language. It is a standard file format for representing 3D interactive vector graphics.
• X3D: X3D is an ISO standard XML-based file format for representing 3D computer graphics. X3D features extensions to VRML (e.g., CAD, Geospatial, NURBS, etc.).
• DXF: DXF stands for Drawing Interchange Format, or Drawing Exchange Format. It is a simple 2D format and technically should be viewed as a Native format. It is Autocad’s native 2D format.